Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 88 results
1.

Optical Control over Liquid–Liquid Phase Separation.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Small Methods, 26 Mar 2024 DOI: 10.1002/smtd.202301724 Link to full text
Abstract: Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
2.

An optogenetic method for the controlled release of single molecules.

violet PhoCl CHO-K1 CV-1 EL4 HEK293T Signaling cascade control Organelle manipulation
Nat Methods, 8 Mar 2024 DOI: 10.1038/s41592-024-02204-x Link to full text
Abstract: We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.
3.

Real-time visualization of structural dynamics of synapses in live cells in vivo.

blue CRY2/CRY2 primary rat hippocampal neurons Neuronal activity control
Nat Methods, 8 Jan 2024 DOI: 10.1038/s41592-023-02122-4 Link to full text
Abstract: The structural plasticity of synapses is crucial for regulating brain functions. However, currently available methods for studying synapse organization based on split fluorescent proteins (FPs) have been limited in assessing synaptic dynamics in vivo due to the irreversible binding of split FPs. Here, we develop 'SynapShot', a method for visualizing the structural dynamics of intact synapses by combining dimerization-dependent FPs (ddFPs) with engineered synaptic adhesion molecules. SynapShot allows real-time monitoring of reversible and bidirectional changes of synaptic contacts under physiological stimulation. The application of green and red ddFPs in SynapShot enables simultaneous visualization of two distinct populations of synapses. Notably, the red-shifted SynapShot is highly compatible with blue light-based optogenetic techniques, allowing for visualization of synaptic dynamics while precisely controlling specific signaling pathways. Furthermore, we demonstrate that SynapShot enables real-time monitoring of structural changes in synaptic contacts in the mouse brain during both primitive and higher-order behaviors.
4.

Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas.

green CcaS/CcaR P. putida
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3473-8_3 Link to full text
Abstract: Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.
5.

Nano-optogenetic CAR-T Cell Immunotherapy.

blue iLID Jurkat mouse in vivo
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3593-3_17 Link to full text
Abstract: Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.
6.

Multimodal Control of Bacterial Gene Expression by Red and Blue Light.

blue red DrBphP PAL E. coli Multichromatic
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3658-9_26 Link to full text
Abstract: By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.
7.

Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications.

blue VVD zebrafish in vivo Transgene expression
J Neurosci Methods, 31 Oct 2023 DOI: 10.1016/j.jneumeth.2023.110001 Link to full text
Abstract: Optogenetic approaches in transparent zebrafish models have provided numerous insights into vertebrate neurobiology. The purpose of this study was to develop methods to activate light-sensitive transgene products simultaneously throughout an entire larval zebrafish.
8.

Spatiotemporal, optogenetic control of gene expression in organoids.

blue CRY2/CIB1 Magnets HEK293T human IPSCs Endogenous gene expression Nucleic acid editing
Nat Methods, 21 Sep 2023 DOI: 10.1038/s41592-023-01986-w Link to full text
Abstract: Organoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
9.

Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.

blue AsLOV2 iLID E. coli HEK293T mouse in vivo rat cortical neurons S. cerevisiae Transgene expression
Nat Methods, 15 May 2023 DOI: 10.1038/s41592-023-01880-5 Link to full text
Abstract: The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
10.

Engineering of NEMO as calcium indicators with large dynamics and high sensitivity.

blue AsLOV2 HeLa Immediate control of second messengers
Nat Methods, 20 Apr 2023 DOI: 10.1038/s41592-023-01852-9 Link to full text
Abstract: Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
11.

Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.

blue green red Am1 c0023g2/BAm green Am1 c0023g2/BAm red AsLOV2 TULIP CHO-K1 HEK293T in vitro S. cerevisiae Transgene expression Multichromatic
Nat Methods, 23 Feb 2023 DOI: 10.1038/s41592-023-01764-8 Link to full text
Abstract: Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
12.

LILAC: enhanced actin imaging with an optogenetic Lifeact.

blue AsLOV2 Schneider 2
Nat Methods, 30 Jan 2023 DOI: 10.1038/s41592-022-01761-3 Link to full text
Abstract: Lifeact is a popular peptide-based label of actin filaments in live cells. We have designed an improved Lifeact variant, LILAC, that binds to actin in light using the LOV2 protein. Light control allows the user to modulate actin labeling, enabling image analysis that leverages modulation for an enhanced view of F-actin dynamics in cells. Furthermore, the tool reduces actin perturbations and cell sickness caused by Lifeact overexpression.
13.

Using Optogenetics to Spatially Control Cortical Dynein Activity in Mitotic Human Cells.

blue iLID HCT116 HeLa
Methods Mol Biol, 2023 DOI: 10.1007/978-1-0716-2958-1_5 Link to full text
Abstract: Several light-inducible hetero-dimerization tools have been developed to spatiotemporally control subcellular localization and activity of target proteins or their downstream signaling. In contrast to other genetic technologies, such as CRISPR-mediated genome editing, these optogenetic tools can locally control protein localization on the second timescale. In addition, these tools can be used to understand the sufficiency of target proteins' function and manipulate downstream events. In this chapter, I will present methods for locally activating cytoplasmic dynein at the mitotic cell cortex in human cells, with a focus on how to generate knock-in cell lines and set up a microscope system.
14.

Application of Optogenetics to Probe the Signaling Dynamics of Cell Fate Decision-Making.

blue iLID D. melanogaster in vivo Signaling cascade control
Methods Mol Biol, 2023 DOI: 10.1007/978-1-0716-3008-2_14 Link to full text
Abstract: The development of optogenetic control over signaling pathways has provided a unique opportunity to decode the role of signaling dynamics in cell fate programing. Here I present a protocol for decoding cell fates through systematic interrogation with optogenetics and visualization of signaling with live biosensors. Specifically, this is written for Erk control of cell fates using the optoSOS system in mammalian cells or Drosophila embryos, though it is intended to be adapted to apply generally for several optogenetic tools, pathways, and model systems. This guide focuses on calibrating these tools, tricks of their use, and using them to interrogate features which program cell fates.
15.

Pyroptosis Induction and Visualization at the Single-Cell Level Using Optogenetics.

violet PhoCl HEK293
Methods Mol Biol, 2023 DOI: 10.1007/978-1-0716-3350-2_10 Link to full text
Abstract: Pyroptosis has been identified as a pro-inflammatory form of programmed cell death. It can be triggered by different stimuli including pathogen invasion or cell stress/danger signals releasing hundreds of proteins upon lysis that cause complex responses in neighboring cells. Pyroptosis is executed by the gasdermin (GSDM) family of proteins which, upon cleavage by caspases, form transmembrane pores that release cytokines to induce inflammation. However, despite the importance of gasdermins in the development of inflammatory diseases and cancer, a lot is still to be understood in the downstream consequences of this cell death pathway. Currently, conventional methods, such as drug treatments or chemically forced oligomerization, are limited in the spatiotemporal analysis of pyroptosis signaling in the cellular population, since all cells are primed for undergoing pyroptosis. Here, we provide a protocol for the application of a novel optogenetics tool called NLS_PhoCl_N-GSDMD_mCherry that enables precise temporal and spatial pyroptosis induction in a confocal microscopy setup, followed by imaging of the cell death process and subsequent quantitative analysis of the experiment. This tool opens new opportunities for the study of pyroptosis activation and of its effects on the bystander cell responses.
16.

Optogenetics for light control of biological systems

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Nat Rev Methods Primers, 21 Jul 2022 DOI: 10.1038/s43586-022-00149-z Link to full text
Abstract: The H2 + H2 system has long been considered a benchmark system for ro-vibrational energy transfer in bimolecular collisions. However, most studies thus far have focused on collisions involving H2 molecules in the ground vibrational level or in the first excited vibrational state. While H2 + H2/HD collisions have received wide attention due to the important role they play in astrophysics, D2 + D2 collisions have received much less attention. Recently, Zhou et al. [ Nat. Chem. 2022, 14, 658-663, DOI: 10.1038/s41557-022-00926-z] examined stereodynamic aspects of rotational energy transfer in collisions of two aligned D2 molecules prepared in the v = 2 vibrational level and j = 2 rotational level. Here, we report quantum calculations of rotational and vibrational energy transfer in collisions of two D2 molecules prepared in vibrational levels up to v = 2 and identify key resonance features that contribute to the angular distribution in the experimental results of Zhou et al. The quantum scattering calculations were performed in full dimensionality and using the rigid-rotor approximation using a recently developed highly accurate six-dimensional potential energy surface for the H4 system that allows descriptions of collisions involving highly vibrationally excited H2 and its isotopologues.
17.

Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment.

blue BcLOV4 E. coli
Cell Rep Methods, 6 Jul 2022 DOI: 10.1016/j.crmeth.2022.100245 Link to full text
Abstract: We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.
18.

A general approach for engineering RTKs optically controlled with far-red light.

red DrBphP HEK293 mouse in vivo Neuro-2a PC6-3 rat cortical neurons Signaling cascade control Immediate control of second messengers Neuronal activity control
Nat Methods, 9 Jun 2022 DOI: 10.1038/s41592-022-01517-z Link to full text
Abstract: Regulation of receptor tyrosine kinase (RTK) activity is necessary for studying cell signaling pathways in health and disease. We developed a generalized approach for engineering RTKs optically controlled with far-red light. We targeted the bacterial phytochrome DrBphP to the cell surface and allowed its light-induced conformational changes to be transmitted across the plasma membrane via transmembrane helices to intracellular RTK domains. Systematic optimization of these constructs has resulted in optically regulated epidermal growth factor receptor, HER2, TrkA, TrkB, FGFR1, IR1, cKIT and cMet, named eDrRTKs. eDrRTKs induced downstream signaling in mammalian cells in tens of seconds. The ability to activate eDrRTKs with far-red light enabled spectral multiplexing with fluorescent probes operating in a shorter spectral range, allowing for all-optical assays. We validated eDrTrkB performance in mice and found that minimally invasive stimulation in the neocortex with penetrating via skull far-red light-induced neural activity, early immediate gene expression and affected sleep patterns.
19.

Optogenetic Activation of Intracellular Nanobodies.

blue Magnets HeLa NIH/3T3
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2075-5_31 Link to full text
Abstract: Intracellular antibody fragments such as nanobodies and scFvs are powerful tools for imaging and for modulating and neutralizing endogenous target proteins. Optogenetically activated intracellular antibodies (optobodies) constitute a light-inducible system to directly control intrabody activities in cells, with greater spatial and temporal resolution than intracellular antibodies alone. Here, we describe optogenetic and microscopic methods to activate optobodies in cells using a confocal microscope and an automated fluorescence microscope. In the protocol, we use the examples of an optobody targeting green fluorescent protein and an optobody that inhibits the endogenous gelsolin protein.
20.

Optogenetic Methods to Control Tissue Mechanics in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2541-5_13 Link to full text
Abstract: Optogenetics is a powerful technique that allows the control of protein function with high spatiotemporal precision using light. Here, we describe the application of this method to control tissue mechanics during Drosophila embryonic development. We detail optogenetic protocols to either increase or decrease cell contractility and analyze the interplay between cell-cell interaction, tissue geometry, and force transmission during gastrulation.
21.

Optogenetic Control of Membrane Trafficking Using Light-Activated Reversible Inhibition by Assembly Trap of Intracellular Membranes (IM-LARIAT).

blue CRY2/CIB1 Cos-7
Methods Mol Biol, 2022 DOI: 10.1007/978-1-0716-2209-4_20 Link to full text
Abstract: Intracellular membrane trafficking is a dynamic and complex cellular process. To study membrane trafficking with a high spatiotemporal resolution, we present an optogenetic method based on a blue-light inducible oligomerization of Rab GTPases, termed light-activated reversible inhibition by assembly trap of intracellular membranes (IM-LARIAT). In this chapter, we focus on the optical disruption of the dynamics and functions of previously studied intracellular membrane trafficking events, including transferrin recycling and growth cone regulation in relation to specific Rab GTPases. To aid general application, we provide a detailed description of transfection, imaging with a confocal microscope, and analysis of data.
22.

A guide to the optogenetic regulation of endogenous molecules.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Nat Methods, 26 Aug 2021 DOI: 10.1038/s41592-021-01240-1 Link to full text
Abstract: Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
23.

Harnessing the power of fluorescence to characterize biomolecular condensates.

blue violet iLID Cryptochromes Fluorescent proteins Review
Methods Microbiol, 12 Aug 2021 DOI: 10.1016/bs.mim.2020.11.005 Link to full text
Abstract: Biomolecular condensates are membrane-less cellular compartments that form via phase separation. They serve a multitude of functions in all types of cells. Important insights into the composition, architecture and dynamics of biomolecular condensates have been obtained by harnessing the power of fluorescence-based technologies. In this chapter, methods will be discussed for (1) fluorescent labelling of macromolecules, (2) spatial and temporal mapping and tracking of target molecules in cellular and in vitro settings, (3) controlling formation and dissolution of biomolecular condensates, and (4) fluorescence-based condensate-targeted drug discovery.
24.

Optogenetic control of calcium influx in mammalian cells.

blue AsLOV2 CRY2/CRY2 HEK293T HeLa
Methods Enzymol, 16 Mar 2021 DOI: 10.1016/bs.mie.2021.02.010 Link to full text
Abstract: Optogenetics combines optics and genetics to enable non-invasive interrogation of cell physiology at an unprecedented high spatiotemporal resolution. Here, we introduce Opto-CRAC as a set of genetically-encoded calcium actuators (GECAs) engineered from the calcium release-activated calcium (CRAC) channel, which has been tailored for optical control of calcium entry and calcium-dependent physiological responses in non-excitable cells and tissues. We describe a detailed protocol for applying Opto-CRAC as an optogenetic tool to achieve photo-tunable control over intracellular calcium signals and calcium-dependent gene expression in mammalian cells.
25.

Quantitative Analysis of Membrane Receptor Trafficking Manipulated by Optogenetic Tools.

blue CRY2/CIB1 HEK293 HEK293T Control of vesicular transport
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1258-3_2 Link to full text
Abstract: Membrane receptors play a crucial role in transmitting external signals inside cells. Signal molecule-bound receptors activate multiple downstream pathways, the dynamics of which are modulated by intracellular trafficking. A significant contribution of β-arrestin to intracellular trafficking has been suggested, but the underlying mechanism is poorly understood. Here, we describe a protocol for manipulating β-arrestin-regulated membrane receptor trafficking using photo-induced dimerization of cryptochrome-2 from Arabidopsis thaliana and its binding partner CIBN. Additionally, the protocol guides analytical methods to quantify the changes in localization and modification of membrane receptors during trafficking.
Submit a new publication to our database